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Abstract-The buckling of an axially loaded cylindrical shell is considered when imperfection components
corresponding to all of the classical buckling modes are taken into consideration. The analysis represents an
extension of Koiter's axisymmetric solution and in the asymptotic sense due to Koiter the imperfections
considered are as general as possible. The results obtained reveal many interesting aspects of shell buckling
which arize for various imperfection forms. The buckling behaviour which results is associated with both
bifurcation and limit point critical states.

INTRODUCTION
The buckling behaviour and consequently the imperfection sensitivity of shell structures has
provided a basis for much theoretical and experimental research. Historically, one of the key
theoretical contributions was that due to Koiter[l] in which he determined the influence of
axisymmetric initial imperfections on the critical load of an axially loaded cylindrical shell. He
recognized that axisymmetric imperfections did not yield a complete explanation of the
imperfection sensitivity for this problem and in a later paper [2] he discussed a single
non-axisymmetric imperfection and suggested that it would be worthwhile to consider more
general imperfection shapes. Further, the papers by Chilver and Johns [3], Hutchinson [4],
Arbocz and Babcock [5], as well as Johns [6] indicate that multiple mode behaviour, which will be
induced by general imperfections, should lead to some interesting aspects of imperfection
sensitivity.

The present paper considers the first order influence of completely general imperfections
within the context of Koiter's asymptotic approach, this being accomplished through an
extension of the analysis in [I]. It is found that, within the limits of the asymptotic analysis, there
are only five imperfection parameters which are of importance in the determination of the critical
load. These five quantities are in turn completely specified by simple relationships which involve
all of the imperfection components corresponding to the classical buckling modes.

POTENTIAL ENERGY

In order that the presentation be complete it is necessary to synopsize Koiter's [1] analysis.
The elastic energy, obtained by Koiter through an extension of Love's shell theory, is
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where G is the shear modulus, h the thickness, v Poisson's ratio, R the radius of the shell, I the
length, x is the non-dimensional axial coordinate, 0 is the polar angle, u, v, ware the axial,
circumferential and radial displacement components respectively. The letter k is defined by
k == h2/3R 2

• Differentiation with respect to x is indicated by a prime and with respect to 0 by a
dot. The load parameter is defined as A == N IEh where N is the axial load per unit circumference
acting on the cylinder. Thus the energy due to the applied load is

1
2~ 1'IR

- W== 2AGh (1 + v)R ° ° u' dx dO.

The fundamental state is found to be

u == - ARx, V == 0, W = vAR.

Consequently, the displacements take the form

u + u == - ARx + u, V + v == v, W + w = AvR + w.

(2)

(3)

(4)

The energy expressions for a transition of the system from the fundamental state to an adjacent
state are obtained by substituting eqns (4) into eqns (1) and (2). The energy is then expanded and
all terms of degree greater than first in U, V and Ware neglected. Therefore, the energy can be
expressed in the form

(5)
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P~[u] == o.
CLASSICAL CRITICAL LOAD

The classical critical load is defined by the smallest eigenvalue of the linearized problem.
After some simplification the eigenvalues of the linearized problem are found to be

p2 k (p2+ n 2)2
A = (p 2 + n 2)2 + 4(1 _ V )2 P 2

(6)
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where P and n are the axial and circumferential wave numbers. The former of these is defined as
P = irrR II. The quantities i and n range over the positive integers as well as zero. If P is treated
as a continuous variable, the minimum value of A occurs when

=! [4(1 - V
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where n takes all integer values, including zero which yield real values for p. Also pn .. pn2
represent the roots of the quadratic equation for p. The minimum value of A thus obtained is

(
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Also, since n = P = 0 represents a translation in the axial direction, it is ignored. Therefore, when
n = 0, the only value of p considered is
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2
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The assumption that p is continuous implies that the shell is infinitely long. This inturn requires
that the boundary conditions be replaced by a periodicity requirement.

The eigenfunctions corresponding to the classical critical load are
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where m is the largest value of n which leads to real values of pn 1,2.

POTENTIAL ENERGY-FIRST APPROXIMATION

Substitution of the above expressions for u, v and w into eqns (5) yields an algebraic
expression which represents a first approximation to the potential energy in the context of a
Koiter style analysis. This expression, after retention of only the predominant terms, is

m

+3 L n2[bo(- an ,an2- bn,bn2 +Cn,Cn2+dnIdn2)
n =1

+ ao(anICn2+ an2Cn, +bnIdn2 + bn2dnI)]}. (13)
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The first order approximation to the potential energy due to the presence of initial radial
imperfections in the shell is obtained by substituting the same expressions for u, v and w into
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2
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and so on. A o, AnI, .. . will be called the imperfection parameters.

(14)

(15)

EQUILIBRIUM EQUATIONS

The algebraic equilibrium equations are obtained by setting the first partial derivatives of the
energy expression with respect to ao, bo, an I, ••• equal to zero. Consequently, the following set of
equations is obtained

m

-SRAp02Ao-4R(A -A,)p02ao +3 L n2(anlcn2+an2cnl+bnldn2+bn2dnd=0, (16)
n =1

m

-SRAp02Bo-4R(A - Adp02bo+ 3 L n2(-anlan2 - bn1 bn2 + CnlCn2+ dnld,,) = 0, (17)
n=1

- SRAp~,An1- 2R(A - A,)p~ Ian 1+ 3n 2(- bOan2+ aoc,,) = 0, (1S)

- SRAP~2An2 - 2R (A - AI)P ~2an2 +3n 2( - boan1+ aocn d = 0, (19)

-SRAp~ ICn1 - 2R(A - A,)P~ ICn 1+ 3n 2(bocn2+ aoa,,) = 0, (20)
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A further set of four equations is obtained for bn1.2, dn1.2 by replacing An 1.2, C n 1.2 and an 1.2,
Cn 1.2 with Bn1.2, Dn 1.2 and bn1.2, dn1.2, respectively. These last eight equatiqns for an 1.2, bn1.2, Cn 1.2

and dn 1.2 are then repeated for all values of n ranging from I to m. There are, therefore, 2+8m
simultaneous equilibrium equations. At this stage, Koiter proceeds when only Ao and Bo are
non-zero. This leads to an investigation of the influence of axisymmetric initial imperfections. On
the other hand, Koiter points out that every set of four equations is only coupled to the first two
equations. Further, every set of four equations is linear if ao, bo are viewed as parameters. The
determination of an 1.2, bn1.2, ... is straight-forward and yields the results
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The equivalent set of relations for bn1,2, dn1,2 is obtained from the above by replacing an 1,2, Cn1,2
with bn1,2, dn1,2 respectively as well as An 1,2, Cn 1,2 with Bn1,2, Dn 1,2 respectively. These 8m
relationships may now be substituted into eqns (16) and (17), thereby reducing the set of
equilibrium equations to only two equations in ao and boo Doing so, yields

and

2 [4R 2(.\ -.\1)2_9(bo
2-ao2)]

-8R.\Ao-4R(.\ -.\I)ao+3(8R.\) [4R 2(.\ -.\t}2-9(bo2+ao2)tS3

(8R.\ )2ao
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(26)

where

2 [4R 2(.\ -.\1)2+9(bo
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The interesting feature of the above equations is that the imperfection parameters associated
with the non-axisymmetric modes, An 1,2, Bn1,2...., appear in three and only three distinct
summations. Therefore, the behaviour of the system depends on the value of these summations
and not on the individual imperfection parameters.

CRITICAL STATES OF EQUILIBRIUM

The equilibrium states of the system are defined to be stable if the second variation of the
energy is greater than zero. A critical state occurs when the second variation becomes zero. In
the present analysis, the second variation is limited to small variations of the eigenfunctions eqns
(10)-(12). This is equivalent to allowing variations of ao, bo, an 1,2, .... The stability matrix is thus
obtained from the potential energy expression, equation (13), where the components of this
matrix have the form 02PA[utlloZIOZ2' and where ZI, Z2 range over ao, bo, anl,2, .... The required
matrix is of dimension 2 +8m. It is of a relatively simple form in that the first two rows and
columns are full while the remainder is composed of 4 x 4 sub-matrices which lie along the
diagonal. In addition, the two full rows and columns depend only on the non-axisymmetric
deflection components; whereas, the 4 x 4 submatrices are dependent only on the axisymmetric
deflection components. For demonstration purposes, the first six rows and columns are shown in
(31).

-4R(A - A,)p02 0 3n 2 Cn2 3n 2 an2 3n 2 cn1 3n 2 an l

0 -4R(A -A,)Po2 - 3n 2an 2 3n 2cn 2 -3n 2 aP1 1 3n 2cn 1

3n 2cn 2 - 3n 2an 2 -2R(A -Al)P~l 0 -3n 2bo 3n2ao
3n 2an 2 3n 2cn 2 0 -2R(A -A,)p~, 3n2ao 3n 2bo
3n 2cn 1 -3n 2an , -3n 2bo 3n2ao -2R(A -Al)P~2 0
3n 2 an 1 3n 2cn I 3n2ao 3n 2bo 0 -2R(A -AI)P~2

(31)



1228 JORN S. HANSEN

In the matrix (31) the next four rows and columns demonstrate the influence of bnl •Z, dnt •z.

Also, n takes the values 1 to m. The system is defined as stable if the matrix is positive definite
which requires all of the leading principal minors to be positive. The matrix in question is of
dimension 2+8m, and the principal minors are evaluated in the most concise manner by starting
in the lower right-hand corner. If the principal minors are designated as M" i = I, 2+8m, then
they are

M t = -2R(A - AI)P;;'Z,

M z= [2R(A - AI)P;;'Z]Z,

M 3= - 2R (iI. - iI.\)p ;;'zm 4[4R Z(iI. - il.1)z - 9(bo
Z+ aoZ)],

M 4= mS[4R z(A - AI)Z - 9(boz+ aoz)]z,

(32)

The remainder of the first 8m principal leading principal minors are given by the following set of
recurrence relations.

MSj+1 = M Sj x [-2R(A - AdP~m-j)z],

M sj +z= M Sj x [-2R(A - AdPZm_j)2]z,

M Sj +3= M Sj x{- 2R (A - AI)P Zm-j)z(m - jt[4R z(A - At>z - 9(bo
z+ aoZ)]),

M Si +4 = M Sj x (m - d[4R Z(A - AI)z - 9(boz+ aoz)]z, (33)

where j = 1, m-1.
The last two leading principal minors are more difficult to evaluate, but after a little

manipulation and after the elimination of an I,Z, bnI,Z, ... they take the form

and

MSm+1 = [- 4R(A - AI)Po
z
] X M sm

{
9~RAt
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2]

+ 3aOS3[4R 3(A - AI)2 - 9(bo2+ ao2) + 36bo2]

- 9boS2[4R 2(A - AI)2 - 9(bo2+ ao2) + 12bo2]}},

M Sm +2= [- 4R(A - AI)P02]2 X M sm

[{
9(8RA?

x 1- 2R(A _ A1)[4R 2(A _ AI)2_9(b/+ ao2)f

x {R (A - AI)SI[4R 2(A - A1)2 - 9(bo2+ ao2)+36a/]

+ 9aOS3[4R 2(A - A\)2 - 9(bo2+ ao
2
)+ 12ao

2
]

- 3boS2[4R 2(A - AI)2 - 9(bo
2+ ao

2
) +36ao2]}}

{
9(8RA)2

X 1- 2R(A _ AI)[4R 2(A _ At)2_9(bo
2+ ao2)]3

x {R (A - AdS \[4R 2(A - A1)2 - 9(bo2+ ao
2
) + 36bo

2
]

(34)
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+ 3aOS3[4R 2(A - Ad2- 9(b0
2 + a02

) +36b02
]

-9boSMR\A - A,)2_9(b02+ a02
) + 12b02

]}}

{ 27(8RA)2
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(35)

It is now possible to determine the critical load for arbitrary values of Ao, Bo, Anl ,2"", in a
straight-forward manner. This involves the numerical solution of eqns (26) and (27) in
conjunction with the requirement that

Mi > 0, i = 1,2 +8m (36)

as the load parameter, A, is increased from zero. The largest value of A, called Ac ' which is such
that all A satisfying

(37)

also yields an equilibrium state which satisfies (36) is then defined as the critical load. This will, of
course, include limit point and bifurcation critical states.

BIFURCATION STATES

In the present problem, it is possible to distinguish two types of bifurcation states; namely,
primary and secondary. Primary bifurcation is defined to be a bifurcation state which occurs
when all of the deflection parameters ao, bo, an '.2, ... are trivial. On the other hand, secondary
bifurcation states are those which occur when any of the deflection parameters are non-zero.

(i) Primary bifurcation
Primary bifurcation represents the classical buckling situation and arises when Ao = Bo =

Anl •2 = ... = O. The bifurcation load is therefore the classical critical load, A,.

(ii) Secondary bifurcation
It is possible to distinguish two secondary bifurcation cases. The simplest case occurs when

Ao, Bo are non-zero and the remaining imperfection parameters are zero. This combination of
imperfection parameters, which leads to bifurcation from axisymmetric to combined
axisymmetric and non-axisymmetric modes, was the case treated by Koiter[l]. The equilibrium
equations are

and (38)

while an 1.2 = bn1,2 = ... = 0 provided that the critical state, defined by

(39)

is not attained. The bifurcation load is the least value of A which satisfies equations (38) and (39).
After normalization with respect to A" the bifurcation load is found as

where

(
So )1/2 [( So )112 (So )J1/2

AB = 1+ 3/2 R2A,2 - 3 R2A12 + 9/4 R 2A/ (40)

(41)
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The other case of secondary bifurcation results when St is non-zero and So, S2, S3 are zero.
The pertinent equilibrium equations are

and (42)

while an l.2, bnl •2 , ••• are in general non-zero. Among the possible solutions of eqns (42), those of
interest are

ao = bo = 0

for A small and the solution of

for some larger value of A.
The critical state of equilibrium is determined from Msm + t which yields the condition

(43)

(44)

(45)

which in turn yields the bifurcation load. After normalization with respect to AJ, it becomes

3 ( SI )1
1
2 [6 ( St )112 (SI )J112

AB = 1+ y'2 R 2A/ - y'2 R 2At
2 +9/2 R 2 A/ . (46)

At this load the system bifurcates from non-axisymmetric to combined non-axisymmetric and
axisymmetric modes. This conclusion is obtained by noting that when ao = bo= 0, then eqn (44)
reduces to the stability criterion (eqn 45).

An interesting feature of the secondary bifurcation cases is that the bifurcation loads are
identical in form. In fact, if So = 2S t , then the bifurcation loads are equal in magnitude.

LIMIT POINT CRITICAL LOADS

Limit point critical loads do not yield to analytical treatment and thus a numerical procedure
is necessary. In the numerical work the factors Ao, Bo, S I, S2 and S3 where chosen as

h h
Ao = Eo 2y'2 ' Bo = Eo 2y'2 '

(47)

A o and Bo have been chosen in the above manner in order that the bifurcation results of eqn (40)
be identical to Koiter's bifurcation results. Furthermore, St, S2 and S3 have been chosen such
that So = SI = ±S2 = ±S3 when Eo = Et = E2 = h The non-dimensional E-parameters are not
simple imperfection amplitude-shell thickness ratios, but may involve both the axial and
circumferencial wave numbers. These parameters will be discussed later. Also, the choice of Ao

and Bo positive in no way detracts from the generality of the results. For, negative values of Ao

and/or Bowill lead to results which are identical to those of positive Aoand Bo if the appropriate
signs are taken for S2 and S3. Therefore, since all combinations of sign are taken for S2 and S3,
the possibilities have been exhausted.
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DISCUSSION OF RESULTS

Typical results of the numerical calculations are shown in Figs. 1-4. The first of these
considers the overall influence of various combinations of the imperfection components and, in
particular, draws attention to the important role of the non-axisymmetric imperfection
components. The subsequent figures investigate a more local type of interaction between the
various imperfection components. Figures 2a,b deal with the imperfection components So and S\
which individually lead to secondary bifurcation states but which, when combined, lead to limit
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Fig. I. Overall influence of the imperfection parameters.
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Fig. 3. Local influence of the non-axisymmetric imperfection components S" S2 and 5,: Eo =0,0, E, =0·1.
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10r--------r--------,

a. EO = E 1 =0-1

i. -52(5,)= ~h2. 5, (52)=0'0

ii. 52 (-5,)= ~. 5,(52)=0{)

10

08

t 06

AC
0.4

00 ,-----
b. EO = E1 =0'1

I. 52 = 53 = _E~h2

ii 52 =53 = E~h2

08

t 06

AC
04

02-

00 ~
020 010 00 010 020

-IE E.....
c. EO = E'I = 0,1

L - 52 = 53 = E:h
Z

II 52 = -53 = E~h2

020 010 00 010 020
--E €---
d. Eo=O-11 EI=0'2

I. -52 =5, = .:h
2

.. 2hz
ii. 52 =-5, = -.-

Fig. 4. Local interaction between the axisymmetric (So) and the non-axisymmetric (SI. S,. S,) imperfection
components.

point states. As is expected, a vertical tangent is evident in the critical load-initial imperfection
curves as either So or SI approaches zero. This feature emphasises the importance of secondary
bifurcation as well as the interaction between axisymmetric and non-axisymmetric imperfection
components. Figures 3a,b are devoted to the investigation of the non-axisymmetric imperfection
components. These figures indicate that the addition of either ±S2 or ±S" to the system
containing only SI, have identical influences on the critical load. The remaining figures
demonstrate the influence of various combinations of S2 and S, when certain components of So
and S\ are present in the system. Since the basic state associated with So and SI is a limit point,
the addition of S2 and S, does not lead to drastic changes in the critical load. Further, the slope of
the critical load-imperfection curves is apparently continuous and equal to zero when E is zero.
One interesting feature of the present results is evident in Figs. 4c,d in which a peak is found.
This is due to an interaction between the different imperfection components which in essence
cancel each other.

The results, as presented, yield relationships between the critical load and Eo, EI, E2 and f3.

This does not yield any information as to the relationship between Eo, E I, E2, E, and the amplitudes
of particular modes and/or the wavelengths of these modes. For illustration purposes, it is
convenient to assume an initial imperfection of the form

Wo(X, 0) = j-loh sin (pox - 1T /2) + j-ln I h sin pn IX cos nO + j-ln 2h sin pn2X cos nO

where j-lo, j-ln 1.2 are the amplitudes of the modal imperfections, normalized with respect to the
thickness of the shell.

The relationships between j-lo, j-lnl, j-ln2 and Eo, EI, E2, E, are therefore

Eo = j-lo

1 [2 2 2 2] 1/2E'=-2 pnlj-lnl+pn2j-ln2po
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Since pn 1.2 and n are always less than po, the above demonstrates that the influence of the
non-axisymmetric imperfection amplitudes JLn 1.2 will be suppressed in relation to the
axisymmetric one, JLo. This suppression is directly related to the wave-lengths, both axial and
circumferential, of the imperfections. For example, in the particular case that JLn2 vanishes and
JLn 1 is equal to JLo,

pnl
fl=-2 fo

po

which reduces to

fl < 1/2fo

for any admissible value of n, R /hand v.
On the other hand, it must be emphasised that fl, f2, f3 are composed of summations

involving 8m, 4m and 4m imperfection components respectively, (m = 9 if R/h = 100 and
v = 0·3 and increase with larger R/h ratios). Therefore, it is not justified to ignore the
non-axisymmetric imperfections, and it could easily occur that they will be predominant.

Another point of interest deals with the assumption of infinite length in the shell. Basically,
the coincidence of the 2+8m critical loads (eigenvalues) depends on p being continuous which
requires the shell to be infinitely long. Therefore, if the shell is assumed to be of finite length the
problem goes from one of coincident to one of nearly coincident critical loads. This near
coincidence results in added analytical difficulties but it must be expected that the imperfection
sensitivity will not be altered appreciably.

In summary, it has been demonstrated that the inclusion of non-axisymmetric imperfections
can lead to intermodel behaviour which results in severe reductions of the critical load.
Bifurcation and limit point critical loads have been examined and in this examination it must be
concluded that both axisymmetric and non-axisymmetric imperfections play equally important
roles.
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